Time Travel Solving
CFOP:
Normal
Scramble: B U2 B2 R' U2 L' U2 L2 R' U2 D' F2 U' B2 F L' B L'
X-Cross: z’ y’ D U B D’ L D’ L’ R’ U’ F2
Pair 1: U R’ F U2 F’
Pair 2: U R U2 R’ U R U2 R U R’
Pair 3: y U R U R’
OLL: U’ F (R U R' U') F' f (R U R' U') f'
PLL: U2 R' U' R U' L R U2 R' U' R U2 L' U R2 U R U
TTS (POCF)
Scramble: B U2 B2 R' U2 L' U2 L2 R' U2 D' F2 U' B2 F L' B L'
PLL: z’ y’ R' U2 D2 B2 R D' R' U B2 D' B2 R2 D' R U
OLL: U D F' D' R D' F R' D B' D F B U' D' R
X-Cross: D U B D’ L D’ L’ R’ U’ F2
Pair 1: U R’ F U2 F’
Pair 2: U R U2 R’ U R U2 R U R’
Pair 3: y U R U R’
LL Skip!
Roux:
Normal:
Scramble: B U2 B2 R' U2 L' U2 L2 R' U2 D' F2 U' B2 F L' B L'
Left 1x2x3: B L’ B’ R’ U2 M2 F
Right 1x2x3: U’ R U’ R U r U r’ U r’ U’ M’ U2 r’ U’ r
CMLL: R’ U’ R’ F R F’ R U’ R’ U2 R
LSE: M’ U2 M’ U2 M U M’ U M U2 M U M’ U2 M’
TTS:
Scramble: B U2 B2 R' U2 L' U2 L2 R' U2 D' F2 U' B2 F L' B L'
4c+4b (EPLR): E2 M’ E2 M U D M B' M' B2 M' B' M U' D'
4a: R2 U M’ U M’ U M’ U M’ U2 M’ U M’ U M’ U M’ U’ R2
Corners: F' U F U' R2 U2 F' D' F U2 D R2 F
Left 1x2x3: B L’ B’ R’ U2 M2 F
Right 1x2x2: U’ R U’ R U r U r’ U r’ U’ M’ U2 r’ U’ r
CMLL+LSE Skip!
This is like traveling to the future, seeing the problems that will occur, then coming back and preventing those problems in the present. An alternate way of doing this is of course to do a setup to place the pieces in the same positions as they would be in a normal solve, perform the normal alg, then undo the setup. I don't yet see any useful applications for this concept. Just something interesting to think about. Maybe the opposite version of this, traveling to the past, would be altering the solved cube in such a way that the scramble will result back in the solved state. Or altering the scramble itself if that would be allowable.