L5EOP

L5EOP method
L5E.png
Information about the method
Proposer(s): Kenneth Gustavsson
Proposed: 2010
Alt Names:
Variants: LSE, L5E, EOLL
No. Steps: 1
No. Algs: 20
Avg Moves: Less than 10 STM
Purpose(s):

L5EOP, last five edges orientation and placement of the last first layer edge, is an experimental method for the 3x3x3 cube that is an alternative to L5E. In L5E the last five edges are first oriented without minding the permutation for the last first layer edge (normally the FD edge), then all five are permuted together. That makes 5 algs for L5EO (orientation) and 16 for L5EP (permutation). This method requires 20 algorithms for orientation and FD placement and on top of that you also need the 4 EPLLs that are used to end the solve.

In the cases where the last FL edge is solved by chance before this step (1:10) knowing ELL will help a good bit, aspecially for the 4-flip case.

- Why L5EOP? Can't I do the same using L5E?
- Well, L5E is more elegant than this but here we are talking brute force, you will always have EPLL in the end and you know it, wich makes recog almost instant. And besides that, here you get a skip in 12 for the last step, without any force used L5E permutation skips in 1 of 60.
- If I use both then? some cases are only three turns to orient if you don't put the last FL edge.
- Yes, and ELL!

See also

Usage of the method

Roux Method; after F2B and CMLL you solve centres and the BD edge and you are here.

Columns First Methods; nearly the same as for Roux but there are two more edges to place (RD/LD) together with the centres after the columns are compleated.

Petrus Method; Build the 2x2x3 block and then you initially skip the "bad edges" step and just do the "finish F2L" part. Because edges are not oriented at this point the pairs will be diffrent, but still easy, (you can benefit from using the empty side). Then, if you do COLL you can use L5EOP after the pairs but better is to use CLL (or even CMLLs like R' U2 R U2 R U2 R U2 R') and do the edges after, it saves turns on average, end in EPLL. For OLL; edges after the pairs, OCLL and last PLL.

LBL, 3 piece cross, F2L as normally, L5EOP, COLL + EPLL or even ZBLL (it becomes an alternative to VHF2L) or for "Fridrich" the same start but any OLL that twist the corners before L5EOP (you can use shorter OLLs if you ignore edges) and last PLL (more or less a 2-look OLL, not an option really, but you can benefit from having a empty side while building the pairs).

Cases

Testing a new image style:

L5EOP cases.jpg

This is the goal position for the five edges involved, UR, UF, UL, UB and FD. The four in U we only orient but the last one (yellow/green) must also be placed. If these images are not perfectly clear to you, then just click one of the algs in the listing for the particular case and you will have a virtual cube showing the case and another click on the play button and it will animate the turns for you.

If you got the last case, the one with all edges correctly oriented, and if the last D edge is still up, you can easily put it by doing AUF and then M' U2 M. Another option is to solve all the rest in one look using the permutations of L5E. The orientation skips 1:16 times. A compleate skip of this step (skip to EPLL) occures 1:80 times (total skip 1:960).

Note that all of these algorithms are written in the Western notation, where a lowercase letter means a double-layer turn and rotations are denoted by x, y, and z. (how to add algorithms)

Click on an algorithm (not the camera icon) to watch an animation of it.

1+1 edge unoriented (1:4)

11R

L5EOP 11R.jpg

Speedsolving Logo tiny.gif OLL M' U' M U' M' U M


11L

L5EOP 11L.jpg

Speedsolving Logo tiny.gif OLL M' U M U M' U' M



11F

L5EOP 11F.jpg

Speedsolving Logo tiny.gif OLL U' (y') M' U R2 U' M U R2


11B

L5EOP 11B.jpg

Speedsolving Logo tiny.gif OLL M' U M U M' U M
Speedsolving Logo tiny.gif OLL U' M U M U2 M' U M'



11D

L5EOP 11D.jpg

Speedsolving Logo tiny.gif OLL M' U M U M' U M U2 M' U2 M
Speedsolving Logo tiny.gif OLL U' B2 M2 U M' U' B2 U' M'
Speedsolving Logo tiny.gif OLL U' (x') U2 M2 (x) U M' d' R2 d' M
Speedsolving Logo tiny.gif OLL U' M' U2 M2 d R2 d' M' d R2


2+0 adjacent edges unoriented (1:4)

A20R

L5EOP 20R.jpg

Speedsolving Logo tiny.gif OLL M U M' U2 M U M2 U2 M
Speedsolving Logo tiny.gif OLL U M d' L2 d M' d' L2
Speedsolving Logo tiny.gif OLL U2 M2' (x') U L' U' M2' U L U' (x)


A20L

L5EOP 20L.jpg

Speedsolving Logo tiny.gif OLL U' M' U' M U2 M' U M



A20F

L5EOP 20F.jpg

Speedsolving Logo tiny.gif OLL U M U' M' U2 M U' M2 U2 M
Speedsolving Logo tiny.gif OLL M d R2 d' M' d R2
Speedsolving Logo tiny.gif OLL U' M2' (x') U' R U M2' U' R' U (x)


A20B

L5EOP 20B.jpg

Speedsolving Logo tiny.gif OLL U2 M' U M U2 M' U' M



A20D

L5EOP 20D.jpg

Speedsolving Logo tiny.gif OLL M U M' U2 M U M'
Use ELL to solve in one look.

2+0 opposite edges unoriented (1:8)

O20R/O20L

L5EOP 20R (b).jpg

Speedsolving Logo tiny.gif OLL M' U' M U M' U' M


O20F/O20B

L5EOP 20B (b).jpg

Speedsolving Logo tiny.gif OLL M' U M U' M' U' M
Speedsolving Logo tiny.gif OLL (y') R2 U M U' R2 U M'



O20D

L5EOP 20D (b).jpg

Speedsolving Logo tiny.gif OLL (x') M' U' R U M U' R' U (x)
Speedsolving Logo tiny.gif OLL R U R' U' M' U R U' r'
Speedsolving Logo tiny.gif OLL M' U M U' M' U M U M' U2 M
Use ELL to solve in one look.

3+1 edges unoriented (1:4)

31R

L5EOP 31R.jpg

Speedsolving Logo tiny.gif OLL M' U M


31L

L5EOP 31L.jpg

Speedsolving Logo tiny.gif OLL M' U' M



31F

L5EOP 31F.jpg

Speedsolving Logo tiny.gif OLL F2 M' U M U' F2
Speedsolving Logo tiny.gif OLL M' U M U M' U2 M


31B

L5EOP 31B.jpg

Speedsolving Logo tiny.gif OLL M' U M U2 M' U2 M



31D

L5EOP 31D.jpg

Speedsolving Logo tiny.gif OLL M' U M U' M' U2 M


4+0 edges unoriented (1:16)

40R/40L/40F/40B

L5EOP 40R.jpg

Speedsolving Logo tiny.gif OLL M' U2 M U2 M' U M


40D

L5EOP 40D.jpg

Speedsolving Logo tiny.gif OLL M' U2 M' U2 M' U M U2 M U2 M
Speedsolving Logo tiny.gif OLL M' U2 M U2 M' U M U2 M' U2 M
Speedsolving Logo tiny.gif OLL (x) U R' U' M2 U R U' M' (x') U' M'
Speedsolving Logo tiny.gif OLL F2 M F2 U M2 U' B2 M B2
Use ELL to solve in one look.