Difference between revisions of "ZZSnake Pattern"
m 
(Tag: mobile edit) 

Line 15:  Line 15:  
}}  }}  
−  The '''ZZSnake Pattern method''' is a 3x3 speedsolving method created by [[Alex Maass]] and [[Mike McNeill]], also known as CubingWithMeki, in 2016. The method is focused both on low move count and high turning speed; during the majority of [[F2L]], the solver only needs to make L, U, and R moves, which means that the solver's hands never leave the left and right sides of the cube, resulting in faster solving. In addition, edges are already oriented when the solver reaches the last layer, meaning the solver has fewer cases to deal with. Unlike the standard [[ZZ Method]], you only perform half of F2L  +  The '''ZZSnake Pattern method''' is a 3x3 speedsolving method created by [[Alex Maass]] and [[Mike McNeill]], also known as CubingWithMeki, in 2016. The method is focused both on low move count and high turning speed; during the majority of [[F2L]], the solver only needs to make L, U, and R moves, which means that the solver's hands never leave the left and right sides of the cube, resulting in faster solving. In addition, edges are already oriented when the solver reaches the last layer, meaning the solver has fewer cases to deal with. Unlike the standard [[ZZ Method]], you only perform half of F2L. 
==The Steps==  ==The Steps== 
Revision as of 20:30, 18 August 2017

The ZZSnake Pattern method is a 3x3 speedsolving method created by Alex Maass and Mike McNeill, also known as CubingWithMeki, in 2016. The method is focused both on low move count and high turning speed; during the majority of F2L, the solver only needs to make L, U, and R moves, which means that the solver's hands never leave the left and right sides of the cube, resulting in faster solving. In addition, edges are already oriented when the solver reaches the last layer, meaning the solver has fewer cases to deal with. Unlike the standard ZZ Method, you only perform half of F2L.
The Steps
 EOLine: This is the most distinctive part of the ZZ method. In this step, the solver orients all the edges while placing the DF and DB edges. The two edges and the bottom centre are the "line" in EOLine. This step puts the cube into an <L, U, R> group, meaning F, B, or D moves are not required for the remainder of the solve. Although this step may seem like a hinderance, it speeds up the F2L and LL.
 ZZSP First Block: The solver creates a 2x3x1 block on the left side of the line via blockbuilding. Because one only needs to do L, U, and R moves, solving is very quick.
 ZZSP Second Block: The solver creates a second 2x3x1 block on the top of the cube via blockbuilding, over the alreadycreated block. This leaves last layer on the right hand side of the cube.
 LL: The solver uses algorithms to solve the remaining pieces. Since the edges in the LL were oriented during EOLine, it can be completed in fewer moves and/or with fewer algorithms to learn.
Variants
There are several variations of the ZZ method, each of which treats the F2L and LL differently:
 PetrusSnake Pattern: This is essentially a reordered variant of ZZSP. You solve the 2x2x3 block in Petrus style, perform EO, then place the block on the top of the cube.
Pros
 Reduced Move Set: Both blocks are completed using only R, U and L turns and no cube rotations are required.
 Efficiency: With a blockbuildingbased F2L and preorientation of LL edges around 55 moves can be achieved without difficulty. Optimising F2L blokbuilding and adoption of more advanced LL systems such as ZBLL will reduce this move count significantly.
 Ease of Learning: This method is very similar to ZZ and other similar methods. It even makes sense to someone coming from Petrus.
 Flexibility: With edges preoriented many systems exist for completing the last layer in a ZZSP solve, ranging from OCLL/PLL to ZBLL. A blockbuilding F2L also allows for the development of many short cuts and tricks as skill improves.
Cons
 Rotation Required before LL  The last layer will always be on the righthand side, requiring a rotation before solving LL.
 Second Block is Unusual  Solving the second block will take practice and can be disorienting and unusual.
 Reliance on Inspection  ZZ makes heavy use of inspection time, which is fine when 15 seconds is given, but in situations where no inspection is used it can be a drawback. For example, when using reduction on big cubes or within multisolve scenarios starting a ZZ solve can be difficult. This isn't much more than other methods though.
 Difficulty of EOLine  EOLine is weird to get used to at first. In order to plan and execute in one step and takes a long time to master. New users should expect it to take in the order of months to achieve full EOLine inspection in 15 seconds. In the interim, breaking it down into two steps (EO + Line) can be used as a fallback.
 Switching between L and R moves  On the other hand, this can feel weird. It takes some time getting used to and mastering. After one does master this though, f2l is really smooth.