Difference between revisions of "Waterman method"

From Speedsolving.com Wiki
Line 26: Line 26:
 
The steps are as follows:
 
The steps are as follows:
 
1. Solve one layer of the cube minus one edge. The original way to do this is by first putting together the corners and then solving the center and edges together. This can also be done with [[block building]] (start with a 1x2x3 block as with [[Roux]] and then fill in the last two corners). For optimal solving, this layer should be held on the L face with the LU edge empty
 
1. Solve one layer of the cube minus one edge. The original way to do this is by first putting together the corners and then solving the center and edges together. This can also be done with [[block building]] (start with a 1x2x3 block as with [[Roux]] and then fill in the last two corners). For optimal solving, this layer should be held on the L face with the LU edge empty
 +
 
2. Solve the corners of the opposite layer. This should be solved using a modified [[CLL]], called WCLL, that solves R corners while ignoring the M-slice and the LU edge.
 
2. Solve the corners of the opposite layer. This should be solved using a modified [[CLL]], called WCLL, that solves R corners while ignoring the M-slice and the LU edge.
 +
 
3a. In one algorithm, solve the LU edge, while solving any two R edges.
 
3a. In one algorithm, solve the LU edge, while solving any two R edges.
 +
 
3b. Finish the R edges while orienting the M edges, all in one algorithm. This step is difficult to learn and has 224 algorithms, but the algorithms mostly use only M, R, r, and U moves, so this is a fast step.
 
3b. Finish the R edges while orienting the M edges, all in one algorithm. This step is difficult to learn and has 224 algorithms, but the algorithms mostly use only M, R, r, and U moves, so this is a fast step.
 +
 
3c. Solve the M edges. This is identical to the 4c step in [[Roux]]
 
3c. Solve the M edges. This is identical to the 4c step in [[Roux]]
  

Revision as of 12:35, 17 May 2020

Waterman method
Waterman method.gif
Information about the method
Proposer(s): Marc Waterman and Daan Krammar
Proposed: 1982
Alt Names: none
Variants: WaterRoux, WaterZZ
No. Steps: 3
No. Algs: 117 Total
42 (Step 2)
75 (Step 3)
Avg Moves: 40 to 45 STM,
over 50 HTM
Purpose(s):

The Waterman method is a method for solving the 3x3x3 cube which was invented by Marc Waterman in the 1980s. The method is based on Corners First methods but is efficient enough to be used for advanced speedsolving.

History

The method was developed by Marc Waterman and his friend Daan Krammer in 1981. Marc added "a lot of additional processes and shortcuts" to achieve a sub-17-second average by the mid-1980s (Minh Thai's 1982 "world record" by comparison was 22.95 seconds). The method seems to have been little-known however. When cubing revived in the late 1990s Jessica Fridrich put her algorithms on her webpage leading to the rise of CFOP as a main speedcubing method. Although many websites mentioned the Waterman Method, its details were nowhere to be found.[1] In August 2004 Josef Jelínek contacted Marc Waterman[2] and obtained information about the method which he placed on his rubikscube.info website.

Classification

It has occasionally been questioned as to whether the Waterman method is a pure Corners First method. According to Josef Jelínek:[3]

Waterman's method can be considered pure Corners-first. The main reason for that is that you can solve all corners first before starting solving edges without any change to the sequences used or a method itself except for swapping two steps. The reason Marc solved one layer completely first was probably because he was used to do it like that. It is sometimes (often) easy to see how to put some edges (and a center) to the first layer during completing the first four corners, so reducing the number of turns required for the first layer. CLL sequences used preserve the first layer. Personally, I solve all corners first + some obvious edges of the first layer.

Steps

The steps are as follows: 1. Solve one layer of the cube minus one edge. The original way to do this is by first putting together the corners and then solving the center and edges together. This can also be done with block building (start with a 1x2x3 block as with Roux and then fill in the last two corners). For optimal solving, this layer should be held on the L face with the LU edge empty

2. Solve the corners of the opposite layer. This should be solved using a modified CLL, called WCLL, that solves R corners while ignoring the M-slice and the LU edge.

3a. In one algorithm, solve the LU edge, while solving any two R edges.

3b. Finish the R edges while orienting the M edges, all in one algorithm. This step is difficult to learn and has 224 algorithms, but the algorithms mostly use only M, R, r, and U moves, so this is a fast step.

3c. Solve the M edges. This is identical to the 4c step in Roux

See also

External links