Difference between revisions of "OLLCP-A"

m (External links: added OLLCP from speedcubingtips.eu)
 
(124 intermediate revisions by 15 users not shown)
Line 1: Line 1:
'''CPEOLL''', corner permutation and edges orientation of the last layer. An [[experimental method]] that [[permute]]s [[last layer]] [[corner]]s and [[orient]]s last layer [[edge]]s preserving [[F2L]]. This is the second last step and the goal is to reach [[EPLL]]. Normally it would be used as a add on to the [[Fridrich method]] the times [[CO]] skips (occures 1:27 times) but it may be used a second step in a 3-look last layer where the first step is to orient the corners.
+
'''OLLCP-A''', ''corner permutation and edges orientation of the last layer'', an [[experimental method]] for the [[3x3x3 cube]] that [[permute]]s the [[last layer]] [[corner]]s and [[orient]]s the last layer [[edge]]s preserving [[F2L]].  
  
There are 17 cases, three of them have corners correctly permuted and may be solved in one look using [[ELL]], two has got edges oriented and may be solved in one look using [[PLL]] (OLL skip). Removing those cases it is only 12 left and of those 4 may be solved using [[J-PLL]] + M setup and two can be solved using [[Y-PLL]] or [[V-PLL]] with a M move setup.
+
{{Substep Infobox
 +
|name=OLLCP-A
 +
|image=OLLCP.png
 +
|proposers=Various
 +
|year=
 +
|anames=[[OELLCP]], [[CPEOLL]], [[KALL]]
 +
|variants=
 +
|subgroup=
 +
|algs=15
 +
|moves=~11
 +
|purpose=<sup></sup>
 +
* [[Speedsolving]]
 +
|previous=[[F2L cube state]]
 +
|next=[[LL:EO+CO+CP cube state]]
 +
}}
  
 +
'''Orientation of Last Layer and Corner Permutation'''
 +
'''OLLCP-A''' is an [[experimental method|experimental]] [[LL]] method which both [[EOLL|orients the last layer edges]] and [[CPLL|permutes the last layer corners]] when the corners are already oriented. Thus after this step only [[EPLL]] remains. It would normally be used as an add on to the [[CFOP]] / [[Fridrich method]] when a [[CO]] skip occurs (1/27 solves) but it may also be used as the second step in a 3-look last layer where the first step is [[OCLL]] (orientation of corners).
  
''A list of cases will follow..''
+
OLLCP-A is a subset of [[OLLCP]] (OLL + CP, AKA OCPLL) which is the same as CLLEO (CLL + EO, AKA CEOLL). [[OLLCP]] is an advanced [[LL]] method with 331 cases and solves all of the last layer except [[EPLL]] in one look.
 +
 
 +
==See also==
 +
* [[OLLCP]]. Advanced LL method which both orients the last layer and solves the corners
 +
* [[CFOP]]. Method which solves the last layer using [[OLL]] and [[PLL]]
 +
* [[CFCE]]. Method which solves the last layer using [[CLL]] and [[ELL]]
 +
* [[EPLL]]. Edge Permutation of the Last Layer which follows OLLCP
 +
 
 +
== External links ==
 +
* [https://docs.google.com/spreadsheet/ccc?key=0Aq2MYrmu606CdFFuallJVFRDQm9FUm44ekoxbDRwQVE#gid=0 Robert Yau's OLLCP]
 +
* [https://sites.google.com/site/piauscubingsite/3x3x3/ollcp/others Antoine Piau's OLLCP]
 +
* [http://sarah.cubing.net/3x3x3/oellcp Sarah Strong's OELLCP]
 +
* AlgDB.Net: [http://algdb.net/Set/OLLCP%2028 OLLCP 28] [http://algdb.net/Set/OLLCP%2057 OLLCP 57] [http://algdb.net/Set/OLLCP%2020 OLLCP 20]
 +
* Speedsolving.com: [http://www.speedsolving.com/forum/showthread.php?t=23005 Thread discussing this method]
 +
* Speedsolving.com: [http://www.speedsolving.com/forum/showthread.php?21210-KCLL Some algorithms]
 +
* Speedsolving.com: [http://www.speedsolving.com/forum/showthread.php?t=53675 Hierarchy of Last Layer Sub-Steps, Subsets of OLLCP and ZBLL]
 +
* [https://www.speedcubingtips.eu/ollcp-orentation-of-last-layer-and-corner-permutation/ speedcubingtips.eu OLLCP algs]
 +
 
 +
=OLLCP-A cases=
 +
There are 15 cases, three of them have corners correctly permuted ([[CLL]] skip) and may be solved in one look using [[ELL]], two has got edges oriented and may be solved in one look using [[PLL]] ([[OLL]] skip). Removing those cases it is only 10 left (2 are mirror cases) and of those 4 may be solved using [[J-PLL]] + M setup and one can be solved using [[Y-PLL]] (or [[V-PLL]]) with a M move setup.
 +
 
 +
== Corners permuted ==
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
===Adjacent flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL PA.jpg]]
 +
|
 +
 
 +
{{Alg|M U M' U2 M U M'}}
 +
{{Alg|(y2) M' U M U2 M' U M}}
 +
{{Alg|Rw U R'  U' M U R U' R'}}
 +
<center>Use [[ELL]] to solve in one look.</center>
 +
 
 +
|}
 +
 
 +
|
 +
 
 +
===Opposite flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL PO.jpg]]
 +
|
 +
 
 +
{{Alg|(x') M' U' R U M U' R' U (x)}}
 +
{{Alg|(R U R' U') M' (U R U' r')}}
 +
<center>Use [[ELL]] to solve in one look.</center>
 +
 
 +
|}
 +
 
 +
|}
 +
{|border="0" width="50%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
 
 +
===4-flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL P4.jpg]]
 +
|
 +
 
 +
{{Alg|M' U2 M U2 M' U M U2 M' U2 M (U')}}
 +
{{Alg|r U R' U' M2 U R U' R' U' M' (U)}}
 +
{{Alg|S' R U R' S U' M' U R U' r'}}
 +
<center>Use [[ELL]] to solve in one look.</center>
 +
 
 +
|}
 +
|}
 +
 
 +
== Edges oriented ==
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
===Adjacent PLL===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL AO.jpg]]
 +
|
 +
 
 +
{{Alg|R L U2 R' U' R U2 L' U R' (U')}}
 +
<center>Use [[PLL]] to solve in one look.</center>
 +
 
 +
|}
 +
 
 +
|
 +
 
 +
===Diagonal PLL===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL DO.jpg]]
 +
|
 +
 
 +
{{Alg|R' U L' U2 R U' L R' U L' U2 R U' L (U)}}
 +
<center>Use [[PLL]] to solve in one look.</center>
 +
 
 +
|}
 +
 
 +
|}
 +
 
 +
== Adjacent corners ==
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
===FR-flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL AFR.jpg]]
 +
|
 +
{{Alg|(y) R' F R' F2 L F' L' F2 R2}}
 +
{{Alg|(y' x') (L' U L') U2 (R U' R') U2' L2 (x)}}
 +
{{Alg|r U R' U' r' F R2 U' R' U' R U R' F'}}
 +
|}
 +
 
 +
|
 +
 
 +
===RB-flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL ARB.jpg]]
 +
|
 +
{{Alg|(y) L F' L F2 R' F R F2 L2}}
 +
{{Alg|(y' x') (R U' R) U2' (L' U L) U2 R2 (x)}}
 +
{{Alg|(y2) l' U' L U l F' L2 U L U L' U' L F}}
 +
{{Alg|M R U R’ F’ R U R’ U’ R’ F R2 U’ R’ U’ M’}}
 +
|}
 +
 
 +
|}
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
 
 +
===BL-flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL ABL.jpg]]
 +
|
 +
{{Alg|(x') L2 U2 R U R' U2 L U' r}}
 +
{{Alg|(y2 x) R2 U2 L U L' U2 R U' l}}
 +
{{Alg|(y2) R2 F2 r U L’ U2 R’ U’ l}}
 +
|}
 +
 
 +
|
 +
 
 +
===LF-flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL ALF.jpg]]
 +
|
 +
 
 +
{{Alg|(x) L2 U2 R' U' R U2 L' U r'}}
 +
{{Alg|r U R' F' R U R' U' R' F R2 U' r'}}
 +
 
 +
|}
 +
 
 +
|}
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
 
 +
===FB-flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL AM.jpg]]
 +
|
 +
{{Alg|F R U' R' U R U R2 F' r U R U' r'}}
 +
{{Alg|r U r' F' R U R' U' R' F R r U' r'}}
 +
{{Alg|R U R' F' U' F R2 U' L' U R' U' M' (x')}}
 +
{{Alg|(y) R U R2 U' R' F R F' U F R2 U R' U' F'}}
 +
{{Alg|(y') R' U2 R U2 R' U R U R' F' U' F U' R}}
 +
{{Alg|L U F' U F U L' U L F' U L F L2}}
 +
{{Alg|(y) R U2 r U R' U' r' U F R F' U R'}}
 +
{{Alg|(y) R2 U R2 B L F' U2 F L' B' U' R2}}
 +
 
 +
|}
 +
 
 +
|
 +
 
 +
===RL-flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL AS.jpg]]
 +
|
 +
{{Alg|(x') R2 U' R' U l' F' U' F R U R'}}
 +
{{Alg|(y) R U' R' F' U F l U' R U R2 (x)}}
 +
{{Alg| (y) R U' R' F' U F R U' R2 F R F’}}
 +
|}
 +
 
 +
|}
 +
{|border="0" width="50%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
 
 +
===4-flip (adjacent)===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL A4.jpg]]
 +
|
 +
{{Alg|F R' F R2 U R' U' F2 U' r U' r' F}}
 +
{{Alg|(y') M' U L2 B2 L U R' U2 L U' M R}}
 +
{{Alg|(y2) R2 (y) M' U M (y') l U' R U2 L' U L U2 (x)}}
 +
{{Alg|L2 (y') M' U' M (y) r' U L' U2 R U' R' U2 (x)}}
 +
|}
 +
|}
 +
 
 +
== Diagonal corners ==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
 
 +
===Adjacent flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL DFR.jpg]]
 +
|
 +
{{Alg|(y) R b' R2 U' R D' R2 D R' U R2 b R'}}
 +
{{Alg|(y2) S R2 D R' U R D' R2 d' l' U' L}}
 +
{{Alg| (y) M’ F R U’ R’ U’ R U R’ F’ R U R’ U’ R’ F R F’}}
 +
|}
 +
|
 +
 
 +
===Opposite flip===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL DM.jpg]]
 +
|
 +
{{Alg|(y) R' U L' U2 R U' (x') U L' U2 R U' L U2 M'}}
 +
{{Alg|L' U l d R2 D R' U' R D' R2 S'}}
 +
{{Alg|(y) R' F' U2 F U' R U R2 F R F' U2 R}}
 +
{{Alg|R U' R2' F R F' R d' R U2 R' F'}}
 +
{{Alg|(y) (x') D' L' U' L D (x) r2' D' r U r' D r2}}
 +
|}
 +
|}
 +
 
 +
{|border="0" width="50%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
 
 +
===4-flip (diagonal)===
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
[[File:CPEOLL D4.jpg]]
 +
|
 +
 
 +
{{Alg|R F' U2 R2 F' R F2 R' F R2 U2 F R'}}
 +
{{Alg|R2 U2 M F2 U' R2 U2 F2 U R2 U2 F2 M'}}
 +
{{Alg|x (U R' D' R2 U2' D B2) (U' R' D' R U' R' U' R2 D) x'}}
 +
{{Alg|R' U2 R' F2 R U R U' R' U R' F' R U' F2 U2 R}}
 +
{{Alg|R' U2 F2 U R' F R U' R U R' U' R' F2 R U2 R}}
 +
{{Alg|x' U R' F2 U2 R' U R2 U' R U2 F2 R U' x}}
 +
 
 +
|}
 +
|}
 +
 
 +
 
 +
[[Category:Experimental methods]]
 +
[[Category:3x3x3 methods]]
 +
 
 +
 
 +
__NOTOC__

Latest revision as of 05:47, 21 June 2019

OLLCP-A, corner permutation and edges orientation of the last layer, an experimental method for the 3x3x3 cube that permutes the last layer corners and orients the last layer edges preserving F2L.

OLLCP-A
OLLCP.png
Information
Proposer(s): Various
Proposed:
Alt Names: OELLCP, CPEOLL, KALL
Variants:
Subgroup:
No. Algs: 15
Avg Moves: ~11
Purpose(s):
Previous state: F2L cube state
Next state: LL:EO+CO+CP cube state

F2L cube state -> OLLCP-A step -> LL:EO+CO+CP cube state


The OLLCP-A step is the step between the F2L cube state and the LL:EO+CO+CP cube state.

Orientation of Last Layer and Corner Permutation OLLCP-A is an experimental LL method which both orients the last layer edges and permutes the last layer corners when the corners are already oriented. Thus after this step only EPLL remains. It would normally be used as an add on to the CFOP / Fridrich method when a CO skip occurs (1/27 solves) but it may also be used as the second step in a 3-look last layer where the first step is OCLL (orientation of corners).

OLLCP-A is a subset of OLLCP (OLL + CP, AKA OCPLL) which is the same as CLLEO (CLL + EO, AKA CEOLL). OLLCP is an advanced LL method with 331 cases and solves all of the last layer except EPLL in one look.

See also

  • OLLCP. Advanced LL method which both orients the last layer and solves the corners
  • CFOP. Method which solves the last layer using OLL and PLL
  • CFCE. Method which solves the last layer using CLL and ELL
  • EPLL. Edge Permutation of the Last Layer which follows OLLCP

External links

OLLCP-A cases

There are 15 cases, three of them have corners correctly permuted (CLL skip) and may be solved in one look using ELL, two has got edges oriented and may be solved in one look using PLL (OLL skip). Removing those cases it is only 10 left (2 are mirror cases) and of those 4 may be solved using J-PLL + M setup and one can be solved using Y-PLL (or V-PLL) with a M move setup.

Corners permuted

Adjacent flip

CPEOLL PA.jpg

Speedsolving Logo tiny.gif Alg M U M' U2 M U M'
Speedsolving Logo tiny.gif Alg (y2) M' U M U2 M' U M
Speedsolving Logo tiny.gif Alg Rw U R' U' M U R U' R'
Use ELL to solve in one look.

Opposite flip

CPEOLL PO.jpg

Speedsolving Logo tiny.gif Alg (x') M' U' R U M U' R' U (x)
Speedsolving Logo tiny.gif Alg (R U R' U') M' (U R U' r')
Use ELL to solve in one look.

4-flip

CPEOLL P4.jpg

Speedsolving Logo tiny.gif Alg M' U2 M U2 M' U M U2 M' U2 M (U')
Speedsolving Logo tiny.gif Alg r U R' U' M2 U R U' R' U' M' (U)
Speedsolving Logo tiny.gif Alg S' R U R' S U' M' U R U' r'
Use ELL to solve in one look.

Edges oriented

Adjacent PLL

CPEOLL AO.jpg

Speedsolving Logo tiny.gif Alg R L U2 R' U' R U2 L' U R' (U')
Use PLL to solve in one look.

Diagonal PLL

CPEOLL DO.jpg

Speedsolving Logo tiny.gif Alg R' U L' U2 R U' L R' U L' U2 R U' L (U)
Use PLL to solve in one look.

Adjacent corners

FR-flip

CPEOLL AFR.jpg

Speedsolving Logo tiny.gif Alg (y) R' F R' F2 L F' L' F2 R2
Speedsolving Logo tiny.gif Alg (y' x') (L' U L') U2 (R U' R') U2' L2 (x)
Speedsolving Logo tiny.gif Alg r U R' U' r' F R2 U' R' U' R U R' F'

RB-flip

CPEOLL ARB.jpg

Speedsolving Logo tiny.gif Alg (y) L F' L F2 R' F R F2 L2
Speedsolving Logo tiny.gif Alg (y' x') (R U' R) U2' (L' U L) U2 R2 (x)
Speedsolving Logo tiny.gif Alg (y2) l' U' L U l F' L2 U L U L' U' L F
Speedsolving Logo tiny.gif Alg M R U R’ F’ R U R’ U’ R’ F R2 U’ R’ U’ M’

BL-flip

CPEOLL ABL.jpg

Speedsolving Logo tiny.gif Alg (x') L2 U2 R U R' U2 L U' r
Speedsolving Logo tiny.gif Alg (y2 x) R2 U2 L U L' U2 R U' l
Speedsolving Logo tiny.gif Alg (y2) R2 F2 r U L’ U2 R’ U’ l

LF-flip

CPEOLL ALF.jpg

Speedsolving Logo tiny.gif Alg (x) L2 U2 R' U' R U2 L' U r'
Speedsolving Logo tiny.gif Alg r U R' F' R U R' U' R' F R2 U' r'


FB-flip

CPEOLL AM.jpg

Speedsolving Logo tiny.gif Alg F R U' R' U R U R2 F' r U R U' r'
Speedsolving Logo tiny.gif Alg r U r' F' R U R' U' R' F R r U' r'
Speedsolving Logo tiny.gif Alg R U R' F' U' F R2 U' L' U R' U' M' (x')
Speedsolving Logo tiny.gif Alg (y) R U R2 U' R' F R F' U F R2 U R' U' F'
Speedsolving Logo tiny.gif Alg (y') R' U2 R U2 R' U R U R' F' U' F U' R
Speedsolving Logo tiny.gif Alg L U F' U F U L' U L F' U L F L2
Speedsolving Logo tiny.gif Alg (y) R U2 r U R' U' r' U F R F' U R'
Speedsolving Logo tiny.gif Alg (y) R2 U R2 B L F' U2 F L' B' U' R2


RL-flip

CPEOLL AS.jpg

Speedsolving Logo tiny.gif Alg (x') R2 U' R' U l' F' U' F R U R'
Speedsolving Logo tiny.gif Alg (y) R U' R' F' U F l U' R U R2 (x)
Speedsolving Logo tiny.gif Alg (y) R U' R' F' U F R U' R2 F R F’

4-flip (adjacent)

CPEOLL A4.jpg

Speedsolving Logo tiny.gif Alg F R' F R2 U R' U' F2 U' r U' r' F
Speedsolving Logo tiny.gif Alg (y') M' U L2 B2 L U R' U2 L U' M R
Speedsolving Logo tiny.gif Alg (y2) R2 (y) M' U M (y') l U' R U2 L' U L U2 (x)
Speedsolving Logo tiny.gif Alg L2 (y') M' U' M (y) r' U L' U2 R U' R' U2 (x)

Diagonal corners

Adjacent flip

CPEOLL DFR.jpg

Speedsolving Logo tiny.gif Alg (y) R b' R2 U' R D' R2 D R' U R2 b R'
Speedsolving Logo tiny.gif Alg (y2) S R2 D R' U R D' R2 d' l' U' L
Speedsolving Logo tiny.gif Alg (y) M’ F R U’ R’ U’ R U R’ F’ R U R’ U’ R’ F R F’

Opposite flip

CPEOLL DM.jpg

Speedsolving Logo tiny.gif Alg (y) R' U L' U2 R U' (x') U L' U2 R U' L U2 M'
Speedsolving Logo tiny.gif Alg L' U l d R2 D R' U' R D' R2 S'
Speedsolving Logo tiny.gif Alg (y) R' F' U2 F U' R U R2 F R F' U2 R
Speedsolving Logo tiny.gif Alg R U' R2' F R F' R d' R U2 R' F'
Speedsolving Logo tiny.gif Alg (y) (x') D' L' U' L D (x) r2' D' r U r' D r2

4-flip (diagonal)

CPEOLL D4.jpg

Speedsolving Logo tiny.gif Alg R F' U2 R2 F' R F2 R' F R2 U2 F R'
Speedsolving Logo tiny.gif Alg R2 U2 M F2 U' R2 U2 F2 U R2 U2 F2 M'
Speedsolving Logo tiny.gif Alg x (U R' D' R2 U2' D B2) (U' R' D' R U' R' U' R2 D) x'
Speedsolving Logo tiny.gif Alg R' U2 R' F2 R U R U' R' U R' F' R U' F2 U2 R
Speedsolving Logo tiny.gif Alg R' U2 F2 U R' F R U' R U R' U' R' F2 R U2 R
Speedsolving Logo tiny.gif Alg x' U R' F2 U2 R' U R2 U' R U2 F2 R U' x