Difference between revisions of "HLS"

From Speedsolving.com Wiki
Line 21: Line 21:
 
A portion of HLS was previously completed and published in 2009 by [[Chester Lian]]. The portion created by him is somewhat commonly known throughout the cubing community as [[Summer Variation]], or SV, and is one of the subsets in HLS.
 
A portion of HLS was previously completed and published in 2009 by [[Chester Lian]]. The portion created by him is somewhat commonly known throughout the cubing community as [[Summer Variation]], or SV, and is one of the subsets in HLS.
  
The idea of the HLS subset was created by [[Rowe Hessler]] in 2013. He had created [https://www.speedsolving.com/forum/threads/ols-vls-hls-algorithms-by-mats-valk-and-rowe-hessler.44642/ a forum post] introducing [[VLS]] and HLS to the public. He had intended to post the rest of the [[VLS]] videos and HLS videos on his and [[Mats Valk]]'s [http://www.youtube.com/channel/UCOvpCbHRg9NSQce3is8MGNw YouTube channel] focusing on OLS, however the channel had stopped posting videos and never finished either of the series of videos. Although the [[VLS]] algorithms were completed and published on [http://rowe.cubing.net/ Rowe's website], no non-[[SV]] HLS algorithms have been published anywhere still, and there is likely nobody currently generating any, still.
+
The idea of the HLS subset was created by [[Rowe Hessler]] in 2013. He had created [https://www.speedsolving.com/forum/threads/ols-vls-hls-algorithms-by-mats-valk-and-rowe-hessler.44642/ a forum post] introducing [[VLS]] and HLS to the public. He had intended to post the rest of the [[VLS]] videos and HLS videos on his and [[Mats Valk]]'s [http://www.youtube.com/channel/UCOvpCbHRg9NSQce3is8MGNw YouTube channel] focusing on OLS, however the channel had stopped posting videos and never finished either of the series of videos. Although the [[VLS]] algorithms were completed and published on [http://rowe.cubing.net/ Rowe's website], no non-[[SV]] HLS algorithms have been published anywhere still, and there is likely nobody currently generating any.
  
 
==Learning Approach==
 
==Learning Approach==

Revision as of 05:40, 2 June 2016

HLS
[[Image:]]
Information
Proposer(s): Rowe Hessler, Chester Lian
Proposed: SV: 2009
The rest of HLS: 2013
Alt Names:
Variants: SV, UF, UL, UR, UFUR, UFUL, ULUR, and all edges misoriented
Subgroup:
No. Algs: 432, including mirrors
Avg Moves:
Purpose(s):
Previous state: HLS setup cube case
Next state: PLL

HLS setup cube case -> HLS step -> PLL


The HLS step is the step between the HLS setup cube case and the PLL.

HLS, short for Hessler Last Slot, is a subset of OLS. The HLS substep solves the last F2L pair, if the edge and corner can be paired with one move and can be paired and inserted with three moves by either using RUR' or the mirror (L'U'L), and it also skips OLL which is the third step used in the widely popular CFOP method. HLS can be used in speedsolving or FMC to decrease move count.

History

A portion of HLS was previously completed and published in 2009 by Chester Lian. The portion created by him is somewhat commonly known throughout the cubing community as Summer Variation, or SV, and is one of the subsets in HLS.

The idea of the HLS subset was created by Rowe Hessler in 2013. He had created a forum post introducing VLS and HLS to the public. He had intended to post the rest of the VLS videos and HLS videos on his and Mats Valk's YouTube channel focusing on OLS, however the channel had stopped posting videos and never finished either of the series of videos. Although the VLS algorithms were completed and published on Rowe's website, no non-SV HLS algorithms have been published anywhere still, and there is likely nobody currently generating any.

Learning Approach

There are 8 subsets under HLS. They are named after which edges are misoriented if the last F2L pair's corner and edge pieces are set up in this way (Setup: RU'R'). Note that there are mirrored cases which still fall under their unmirrored subsets. These subsets include SV, UF, UL, UR, UFUR, UFUL, ULUR, and all edges. Each of these subsets include 54 algorithms, if mirrors are counted as separate cases. It is usually recommended to first learn SV and then the rest of HLS in whatever order you choose. Learn the placement of the top layer's stickers, like they are in OLL.

Pros

  • Move count is decreased compared to normally doing the last F2L pair, then OLL.
  • It requires less look ahead, if implemented into solves, compared to doing the last F2L pair and OLL.
  • You'll instantly gain cool kid points and be able to impress your cubing friends

Cons

  • There are a total of 432 algorithms, including mirrors.
  • Because of the first point, this means that if the solver were to learn full HLS, it would likely take at least a year if 1 algorithm was learned per day.

See Also

External Links