Difference between revisions of "First Two Layers"

m (spelling)
Line 9: Line 9:
  
 
== Approaches ==
 
== Approaches ==
 +
 +
=== Petrus F2L ===
 +
 +
Another way to solve the 'F2L' is by building blocks, common during the first two layers of the [[Petrus]] method.
  
 
=== Fridrich F2L ===
 
=== Fridrich F2L ===
Line 15: Line 19:
 
The concept of pairing up four corner/edge pairs was first proposed by [[Ren Schoof]] in 1981.
 
The concept of pairing up four corner/edge pairs was first proposed by [[Ren Schoof]] in 1981.
  
=== Petrus F2L ===
+
Most people agree that the Fridrich F2L should be done intuitively, but when you are starting out it can be instructive to see some optimal solutions for each F2L pair.  Below is a collection of such optimal solutions
 +
 
 +
==Easy Cases==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 1 ===
 +
[[Image:F2L01.png]]
 +
 
 +
{{Alg|U (R U' R')|F2L}}
 +
{{Alg|R' F R F'|F2L}}
 +
 
 +
|
 +
 
 +
=== F2L 2 ===
 +
[[Image:F2L02.png]]
 +
 
 +
{{Alg|y' U' (R' U R)|F2L}}
 +
{{Alg|F R' F' R|F2L}}
 +
 
 +
|-valign="top"
 +
|
 +
=== F2L 3 ===
 +
[[Image:F2L03.png]]
 +
 
 +
{{Alg|U (R U' R')|F2L}}
 +
 
 +
|
 +
=== F2L 4 ===
 +
[[Image:F2L04.png]]
 +
 
 +
{{Alg|y' U' (R' U R)|F2L}}
 +
 
 +
|-valign="top"
 +
|}
 +
 
 +
==Reposition Edge==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 5 ===
 +
[[Image:F2L05.png]]
 +
 
 +
{{Alg|(U' R U R') U2 (R U' R')|F2L}}
 +
 
 +
|
 +
 
 +
=== F2L 6 ===
 +
[[Image:F2L06.png]]
 +
 
 +
{{Alg|d (R' U' R) U2' (R' U R)|F2L}}
 +
{{Alg|y' (U R' U' R) U2 (R' U R)|F2L}}
 +
 
 +
 
 +
|-valign="top"
 +
|
 +
=== F2L 7 ===
 +
[[Image:F2L07.png]]
 +
 
 +
{{Alg|U' (R U2' R') U2 (R U' R')|F2L}}
 +
 
 +
|
 +
 
 +
=== F2L 8 ===
 +
[[Image:F2L08.png]]
 +
 
 +
{{Alg|d (R' U2 R) U2' (R' U R)|F2L}}
 +
{{Alg|y' U (R' U2 R) U2 (R' U R)|F2L}}
 +
 
 +
|-valign="top"
 +
|}
 +
 
 +
==Reposition Edge and Flip Corner==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 9 ===
 +
[[Image:F2L09.png]]
 +
 
 +
{{Alg|d (R' U' R U')(R' U' R)|F2L}}
 +
{{Alg|d y2 U' (L U') d' (L' U' L)|F2L}}
 +
|
 +
 
 +
=== F2L 10 ===
 +
[[Image:F2L010.png]]
 +
 
 +
{{Alg|U' (R U R' U)(R U R')|F2L}}
 +
 
 +
 
 +
|-valign="top"
 +
|
 +
=== F2L 11 ===
 +
[[Image:F2L11.png]]
 +
 
 +
{{Alg|U' (R U2' R') d (R' U' R)|F2L}}
 +
 
 +
|
 +
 
 +
=== F2L 12 ===
 +
[[Image:F2L12.png]]
 +
 
 +
{{Alg|d (R' U2 R) d' (R U R')|F2L}}
 +
 
 +
|-valign="top"
 +
|
 +
=== F2L 13 ===
 +
[[Image:F2L13.png]]
 +
 
 +
{{Alg|d (R' U R U')(R' U' R)|F2L}}
 +
{{Alg|y' U (R' U R U')(R' U' R)|F2L}}
 +
|
 +
 
 +
=== F2L 14 ===
 +
[[Image:F2L14.png]]
 +
 
 +
{{Alg|U' (R U' R' U)(R U R')|F2L}}
 +
 
 +
|-valign="top"
 +
|}
 +
 
 +
==Split Pair by Going Over==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 15 ===
 +
[[Image:F2L15.png]]
 +
 
 +
{{Alg|y' (R' U R U') d' (R U R')|F2L}}
 +
{{Alg|y (L' U L) U2 y (R U R')|F2L}}
 +
|
 +
 
 +
=== F2L 16 ===
 +
[[Image:F2L16.png]]
 +
 
 +
{{Alg|(R U' R' U) d (R' U' R)|F2L}}
 +
{{Alg|(R U' R') U2 (F' U' F)|F2L}}
 +
|-valign="top"
 +
|
 +
=== F2L 17 ===
 +
[[Image:F2L17.png]]
 +
 
 +
{{Alg|(R U2 R') U' (R U R')|F2L}}
 +
 
 +
|
 +
 
 +
=== F2L 18 ===
 +
[[Image:F2L18.png]]
 +
 
 +
{{Alg|y' (R' U2 R) U (R' U' R)|F2L}}
 +
 
 +
|-valign="top"
 +
|}
 +
 
 +
==Pair Made on Side==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 19 ===
 +
[[Image:F2L19.png]]
 +
 
 +
{{Alg|U (R U2 R') U (R U' R')|F2L}}
 +
|
 +
 
 +
=== F2L 20 ===
 +
[[Image:F2L20.png]]
 +
 
 +
{{Alg|y' U' (R' U2 R) U' (R' U R)|F2L}}
 +
|-valign="top"
 +
|
 +
=== F2L 21 ===
 +
[[Image:F2L21.png]]
 +
 
 +
{{Alg|U2 (R U R' U)(R U' R')|F2L}}
 +
 
 +
|
 +
 
 +
=== F2L 22 ===
 +
[[Image:F2L22.png]]
 +
 
 +
{{Alg|y' U2 (R' U' R U')(R' U R)|F2L}}
 +
 
 +
|-valign="top"
 +
|}
 +
 
 +
==Weird==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 23 ===
 +
[[Image:F2L23.png]]
 +
 
 +
{{Alg|(R U R' U') U' (R U R' U')(R U R')|F2L}}
 +
{{Alg|U2 R2 U2 (R' U' R U') R2|F2L}}
 +
|
 +
 
 +
=== F2L 24 ===
 +
[[Image:F2L24.png]]
 +
 
 +
{{Alg|y' (R' U' R U) U (R' U' R U)(R' U' R)|F2L}}
 +
{{Alg|y' U2 R2 U2 (R U R' U) R2|F2L}}
 +
|-valign="top"
 +
|}
 +
 
 +
==Corner in Place, Edge in U Face==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 25 ===
 +
[[Image:F2L25.png]]
 +
 
 +
{{Alg|d' (L' U L) d (R U' R')|F2L}}
 +
{{Alg|y U' (L' U' L) U (F U F')|F2L}}
 +
{{Alg|U' (F' U F) U (R U' R')|F2L}}
 +
|
 +
 
 +
=== F2L 26 ===
 +
[[Image:F2L26.png]]
 +
 
 +
{{Alg|U (R U' R') d' (L' U L)|F2L}}
 +
{{Alg|U (R U' R') U' (F' U F)|F2L}}
 +
 
 +
|-valign="top"
 +
|
 +
=== F2L 27 ===
 +
[[Image:F2L27.png]]
 +
 
 +
{{Alg|(R U' R' U)(R U' R')|F2L}}
 +
 
 +
|
 +
 
 +
=== F2L 28 ===
 +
[[Image:F2L28.png]]
 +
 
 +
{{Alg|y' (R' U R U')(R' U R)|F2L}}
 +
{{Alg|(R U' R') U2 (F' U F)|F2L}}
 +
 
 +
|-valign="top"
 +
|
 +
=== F2L 29 ===
 +
[[Image:F2L29.png]]
 +
 
 +
{{Alg|y' (R' U' R U)(R' U' R)|F2L}}
 +
|
 +
 
 +
=== F2L 30 ===
 +
[[Image:F2L30.png]]
 +
 
 +
{{Alg|(R U R' U')(R U R')|F2L}}
 +
 
 +
|-valign="top"
 +
|}
 +
 
 +
==Edge in Place, Corner in U face==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 31 ===
 +
[[Image:F2L31.png]]
 +
 
 +
{{Alg|(R U' R') d (R' U R)|F2L}}
 +
{{Alg|(R U' R' U)(F' U F)|F2L}}
 +
|
 +
 
 +
=== F2L 32 ===
 +
[[Image:F2L32.png]]
 +
 
 +
{{Alg|(R U R' U')(R U R' U')(R U R')|F2L}}
 +
 
 +
|-valign="top"
 +
|
 +
=== F2L 33 ===
 +
[[Image:F2L33.png]]
 +
 
 +
{{Alg|(U' R U' R') U2 (R U' R')|F2L}}
 +
{{Alg|y U' (L U' L') U2 (L U' L)|F2L}}
 +
|
 +
 
 +
=== F2L 34 ===
 +
[[Image:F2L34.png]]
 +
 
 +
{{Alg|U' (R U2' R') U (R U R')|F2L}}
 +
{{Alg|U (R U R') U2 (R U R')|F2L}}
 +
{{Alg|d (R' U R) U2 (R' U R)|F2L}}
 +
|-valign="top"
 +
|
 +
=== F2L 35 ===
 +
[[Image:F2L35.png]]
 +
 
 +
{{Alg|(U' R U R') d (R' U' R)|F2L}}
 +
{{Alg|U2 (R U' R') U' (F' U' F)|F2L}}
 +
|
 +
 
 +
=== F2L 36 ===
 +
[[Image:F2L36.png]]
 +
 
 +
{{Alg|d (R' U' R) d' (R U R')|F2L}}
 +
{{Alg|y U2 (L' U L) U (F U F')|F2L}}
 +
|-valign="top"
 +
|}
 +
 
 +
==Edge and Corner in Place==
 +
 
 +
{|border="0" width="100%" valign="top" cellpadding="3"
 +
|-valign="top"
 +
|
 +
=== F2L 37 ===
 +
[[Image:F2L37.png]]
 +
 
 +
Solved
 +
|
 +
 
 +
=== F2L 38 ===
 +
[[Image:F2L38.png]]
 +
 
 +
{{Alg|(R U' R') d (R' U2 R) U2' (R' U R)|F2L}}
 +
{{Alg|(R U R') U2 (R U2 R') d (R' U' R)|F2L}}
 +
|-valign="top"
 +
|
 +
=== F2L 39 ===
 +
[[Image:F2L39.png]]
 +
 
 +
{{Alg|(R U' R') U' (R U R') U2 (R U' R')|F2L}}
 +
{{Alg|y (L' U' L) U2 (L' U L U')(L' U' L)|F2L}}
 +
|
 +
 
 +
=== F2L 40 ===
 +
[[Image:F2L40.png]]
 +
 
 +
{{Alg|(R U' R' U)(R U2' R') U (R U' R')|F2L}}
 +
{{Alg|(R U R') U2 (R U' R' U)(R U R')|F2L}}
 +
|-valign="top"
 +
|
 +
=== F2L 41 ===
 +
[[Image:F2L41.png]]
 +
 
 +
{{Alg|(R U' R') d (R' U' R U')(R' U' R)|F2L}}
 +
{{Alg|y (L' U' L U)(L' U L) U2 (F U F')|F2L}}
 +
|
 +
 
 +
=== F2L 42 ===
 +
[[Image:F2L42.png]]
  
Another way to solve the 'F2L' is by building blocks, common during the first two layers of the [[Petrus]] method.
+
{{Alg|(R U' R') d2 y (R' U' R U')(R' U R)|F2L}}
 +
{{Alg|(R U R' U')(R U' R') U2 (F' U' F)|F2L}}
 +
|-valign="top"
 +
|}
  
 
== See Also ==
 
== See Also ==
Line 29: Line 384:
  
 
== External Resources ==
 
== External Resources ==
[http://www.opticubes.com/cubing/f2l/ Optimal F2L Cases]
+
[http://www.opticubes.com/cubing/f2l/ Opticubes.com Optimal F2L Cases]
 +
[http://erikku.er.funpic.org/rubik/F2L.html Erik Akkersdijk's F2L Cases (from his old site)]
 +
[http://www.cubestation.co.uk/cs2/index.php?page=3x3x3/cfop/f2l/f2l Dan Harris's F2L Cases]
 +
[http://jmbaum.110mb.com/f2l.htm Jason Baum's F2L Cases]
 +
[http://www.kungfoomanchu.com/#333speedcubing Andy Klise's Printable F2L PDF]
  
 
[[Category:Cubing Terminology]]
 
[[Category:Cubing Terminology]]
 
{{stub}}
 

Revision as of 08:31, 9 March 2010

The First Two Layers

First Two Layers, or F2L are normally the first two bottom layers of the 3x3x3 cube, or essentially all layers up until the last layer on larger cubes.

The definition is a little different depending on the subject or who you are talking to. Normally it is as above but it may also refer to the part of the Fridrich method that solves the pairs without counting the cross part.

See also:

Approaches

Petrus F2L

Another way to solve the 'F2L' is by building blocks, common during the first two layers of the Petrus method.

Fridrich F2L

There are many ways to solve the 'F2L' on a cube. A common system is using the Fridrich method first two layer approach. After solving the cross, a corner-edge pair is paired up, and then inserted into the correct slot. A total of four corner edge (or 'CE') pairs are made and inserted to solve the first two layers.

The concept of pairing up four corner/edge pairs was first proposed by Ren Schoof in 1981.

Most people agree that the Fridrich F2L should be done intuitively, but when you are starting out it can be instructive to see some optimal solutions for each F2L pair. Below is a collection of such optimal solutions

Easy Cases

F2L 1

F2L01.png

Speedsolving Logo tiny.gif F2L U (R U' R')
Speedsolving Logo tiny.gif F2L R' F R F'


F2L 2

F2L02.png

Speedsolving Logo tiny.gif F2L y' U' (R' U R)
Speedsolving Logo tiny.gif F2L F R' F' R


F2L 3

F2L03.png

Speedsolving Logo tiny.gif F2L U (R U' R')


F2L 4

F2L04.png

Speedsolving Logo tiny.gif F2L y' U' (R' U R)


Reposition Edge

F2L 5

F2L05.png

Speedsolving Logo tiny.gif F2L (U' R U R') U2 (R U' R')


F2L 6

F2L06.png

Speedsolving Logo tiny.gif F2L d (R' U' R) U2' (R' U R)
Speedsolving Logo tiny.gif F2L y' (U R' U' R) U2 (R' U R)


F2L 7

F2L07.png

Speedsolving Logo tiny.gif F2L U' (R U2' R') U2 (R U' R')


F2L 8

F2L08.png

Speedsolving Logo tiny.gif F2L d (R' U2 R) U2' (R' U R)
Speedsolving Logo tiny.gif F2L y' U (R' U2 R) U2 (R' U R)


Reposition Edge and Flip Corner

F2L 9

F2L09.png

Speedsolving Logo tiny.gif F2L d (R' U' R U')(R' U' R)
Speedsolving Logo tiny.gif F2L d y2 U' (L U') d' (L' U' L)

F2L 10

File:F2L010.png

Speedsolving Logo tiny.gif F2L U' (R U R' U)(R U R')


F2L 11

F2L11.png

Speedsolving Logo tiny.gif F2L U' (R U2' R') d (R' U' R)


F2L 12

F2L12.png

Speedsolving Logo tiny.gif F2L d (R' U2 R) d' (R U R')


F2L 13

F2L13.png

Speedsolving Logo tiny.gif F2L d (R' U R U')(R' U' R)
Speedsolving Logo tiny.gif F2L y' U (R' U R U')(R' U' R)

F2L 14

F2L14.png

Speedsolving Logo tiny.gif F2L U' (R U' R' U)(R U R')


Split Pair by Going Over

F2L 15

F2L15.png

Speedsolving Logo tiny.gif F2L y' (R' U R U') d' (R U R')
Speedsolving Logo tiny.gif F2L y (L' U L) U2 y (R U R')

F2L 16

F2L16.png

Speedsolving Logo tiny.gif F2L (R U' R' U) d (R' U' R)
Speedsolving Logo tiny.gif F2L (R U' R') U2 (F' U' F)

F2L 17

F2L17.png

Speedsolving Logo tiny.gif F2L (R U2 R') U' (R U R')


F2L 18

F2L18.png

Speedsolving Logo tiny.gif F2L y' (R' U2 R) U (R' U' R)


Pair Made on Side

F2L 19

F2L19.png

Speedsolving Logo tiny.gif F2L U (R U2 R') U (R U' R')

F2L 20

F2L20.png

Speedsolving Logo tiny.gif F2L y' U' (R' U2 R) U' (R' U R)

F2L 21

F2L21.png

Speedsolving Logo tiny.gif F2L U2 (R U R' U)(R U' R')


F2L 22

F2L22.png

Speedsolving Logo tiny.gif F2L y' U2 (R' U' R U')(R' U R)


Weird

F2L 23

F2L23.png

Speedsolving Logo tiny.gif F2L (R U R' U') U' (R U R' U')(R U R')
Speedsolving Logo tiny.gif F2L U2 R2 U2 (R' U' R U') R2

F2L 24

F2L24.png

Speedsolving Logo tiny.gif F2L y' (R' U' R U) U (R' U' R U)(R' U' R)
Speedsolving Logo tiny.gif F2L y' U2 R2 U2 (R U R' U) R2

Corner in Place, Edge in U Face

F2L 25

F2L25.png

Speedsolving Logo tiny.gif F2L d' (L' U L) d (R U' R')
Speedsolving Logo tiny.gif F2L y U' (L' U' L) U (F U F')
Speedsolving Logo tiny.gif F2L U' (F' U F) U (R U' R')

F2L 26

F2L26.png

Speedsolving Logo tiny.gif F2L U (R U' R') d' (L' U L)
Speedsolving Logo tiny.gif F2L U (R U' R') U' (F' U F)


F2L 27

F2L27.png

Speedsolving Logo tiny.gif F2L (R U' R' U)(R U' R')


F2L 28

F2L28.png

Speedsolving Logo tiny.gif F2L y' (R' U R U')(R' U R)
Speedsolving Logo tiny.gif F2L (R U' R') U2 (F' U F)


F2L 29

F2L29.png

Speedsolving Logo tiny.gif F2L y' (R' U' R U)(R' U' R)

F2L 30

F2L30.png

Speedsolving Logo tiny.gif F2L (R U R' U')(R U R')


Edge in Place, Corner in U face

F2L 31

F2L31.png

Speedsolving Logo tiny.gif F2L (R U' R') d (R' U R)
Speedsolving Logo tiny.gif F2L (R U' R' U)(F' U F)

F2L 32

F2L32.png

Speedsolving Logo tiny.gif F2L (R U R' U')(R U R' U')(R U R')


F2L 33

F2L33.png

Speedsolving Logo tiny.gif F2L (U' R U' R') U2 (R U' R')
Speedsolving Logo tiny.gif F2L y U' (L U' L') U2 (L U' L)

F2L 34

F2L34.png

Speedsolving Logo tiny.gif F2L U' (R U2' R') U (R U R')
Speedsolving Logo tiny.gif F2L U (R U R') U2 (R U R')
Speedsolving Logo tiny.gif F2L d (R' U R) U2 (R' U R)

F2L 35

F2L35.png

Speedsolving Logo tiny.gif F2L (U' R U R') d (R' U' R)
Speedsolving Logo tiny.gif F2L U2 (R U' R') U' (F' U' F)

F2L 36

F2L36.png

Speedsolving Logo tiny.gif F2L d (R' U' R) d' (R U R')
Speedsolving Logo tiny.gif F2L y U2 (L' U L) U (F U F')

Edge and Corner in Place

F2L 37

F2L37.png

Solved

F2L 38

F2L38.png

Speedsolving Logo tiny.gif F2L (R U' R') d (R' U2 R) U2' (R' U R)
Speedsolving Logo tiny.gif F2L (R U R') U2 (R U2 R') d (R' U' R)

F2L 39

F2L39.png

Speedsolving Logo tiny.gif F2L (R U' R') U' (R U R') U2 (R U' R')
Speedsolving Logo tiny.gif F2L y (L' U' L) U2 (L' U L U')(L' U' L)

F2L 40

F2L40.png

Speedsolving Logo tiny.gif F2L (R U' R' U)(R U2' R') U (R U' R')
Speedsolving Logo tiny.gif F2L (R U R') U2 (R U' R' U)(R U R')

F2L 41

F2L41.png

Speedsolving Logo tiny.gif F2L (R U' R') d (R' U' R U')(R' U' R)
Speedsolving Logo tiny.gif F2L y (L' U' L U)(L' U L) U2 (F U F')

F2L 42

F2L42.png

Speedsolving Logo tiny.gif F2L (R U' R') d2 y (R' U' R U')(R' U R)
Speedsolving Logo tiny.gif F2L (R U R' U')(R U' R') U2 (F' U' F)

See Also

External Resources

Opticubes.com Optimal F2L Cases Erik Akkersdijk's F2L Cases (from his old site) Dan Harris's F2L Cases Jason Baum's F2L Cases Andy Klise's Printable F2L PDF