Difference between revisions of "EPLL"
m 

Line 4:  Line 4:  
proposers=  proposers=  
year=  year=  
−  anames=  +  anames=Edges permutation of the last layer 
variants=[[Beginner EP]]  variants=[[Beginner EP]]  
subgroup=  subgroup= 
Latest revision as of 22:05, 12 July 2017


Edges permutation of the last layer, abbrevaited EPLL, is the sub group of PLL where only the edges are permuted. EPLL is also used in many other methods, sometimes as a stand alone substep, like in COLL but also as a sub group, for example in ELL or ZBLL.
See also
EPLL algorithms
Note that all of these algorithms are written in the Western notation, where a lowercase letter means a doublelayer turn and rotations are denoted by x, y, and z. (how to add algorithms) Click on an algorithm (not the camera icon) to watch an animation of it. 
H Permutation
Name: HPLL, XPLL 
PLL  M2' U M2' U2 M2' U M2'  [1] 
PLL  M2' U' M2' U2' M2' U' M2'  [2] 
PLL  R2' U2 R' U2 R2' U2' R2' U2 R' U2 R2'  [3] 
PLL  M2' U2 M2' U' M2' U2 M2' U 
PLL  M2' U2 M2' U M2' U2 M2' U' 
PLL  R2 U2 R U2 R2 U2 R2 U2 R U2 R2 
PLL  R2 U2 R2 U2 R2 U R2 U2 R2 U2 R2 
PLL  R U2' R' U' R' U' R2 U' R2' U2' R2 U2' R' (U) 
PLL  L2 U2 L' U2 L2 U2 L2 U2 L' U2 L2 
PLL  L R U2 L' R' F' B' U2 F B 
PLL  L R U2 L' R' (y) L' R' U2 L R 
PLL  S R U2 R2 U2 R2 U2 R S' 
PLL  F2 M2' F2 U' F2 M2' F2 
PLL  (x) U2 M2' U2 B' U2 M2' U2 (x') 
PLL  L R U2 L' l' U' u' L2 U (z) L 
PLL  M2' u M2' u2 M2' u M2' 
PLL  M2' u' M2' u2' M2' u' M2' 
U Permutation : a
Name: UPLL a 
PLL  R2 U' R' U' R U R U R U' R 
PLL  (y2) R U' R U R U R U' R' U' R2  [4] 
PLL  R U R' U R' U' R2 U' R' U R' U R 
PLL  M2 U M' U2 M U M2 
PLL  (y2) M2 U M U2 M' U M2 
PLL  (y') M2 u' M u2 M u' M2 
PLL  (y) M2 u' M' u2 M' u' M2 
PLL  (y2) F2 U' (L R') F2 (L' R) U' F2 
PLL  (y2) F2 U' M' U2 M U' F2 
PLL  R U R' U' L' U' L U2 R U' R' U' L' U L 
PLL  r U R' U R' U' R2 U' r' U R' U R 
PLL  R2 U' S' U2' S U' R2 
U Permutation : b
Name: UPLL b 
PLL  R' U R' U' R' U' R' U R U R2 
PLL  (y2) R2 U R U R' U' R' U' R' U R' 
PLL  M2 U' M' U2 M U' M2 
PLL  (y2) M2 U' M U2 M' U' M2 
PLL  (y2) L' U L' U' L' U' L' U L U L2 
PLL  (y') M2 u M' u2 M' u M2 
PLL  R U' R U R U R' U' R' U' R' U2 R' 
PLL  (y2) R' U' R U' R U R2 U R U' R U' R' 
PLL  (y2) (L' U' L U) (R U R') U2 (L' U L) (U R U' R') 
PLL  (z) U2' R U R U' R' U' R' U' R U' (z') 
PLL  (y2 z) U' R U' R' U' R' U' R U R U2' (z') 
PLL  (y2) F2 U M' U2 M U F2 
PLL  (y') r2 u M' u2 M' u r2 
PLL  (y2) (L' U' L U' L' U2 L) U' (R U R' U R U2' R') 
Z Permutation
Name: ZPLL 
PLL  M2 U M2 U M U2 M2 U2 M U2 
PLL  (y) M2 U' M2 U' M U2' M2 U2' M U2' 
PLL  M2 U' M (U2 M2 U2) M U M2 
PLL  (y) M2 U M (U2' M2 U2') M U' M2 
PLL  R' U' R2 U (R U R' U') (R U R U') R U' R' U2  [5] 
PLL  R U R' U R' U' R' U R U' R' U' R2 U R U2  [6] 
PLL  (y) (M2' U')2 M' (U2' M2' U2') M' 
PLL  M2' U2 M' U' M2' U' M2' U' M' 
PLL  (y) M2' U2 M' U M2' U M2' U M' 
PLL  M' U' M2' U' M2' U' M' U2 M2' 
PLL  (y) M' U M2' U M2' U M' U2 M2' 
PLL  M' U2 M2 U2 M' U' M2 U' M2 
PLL  M2' U M2' U' E2 M' E2 M' 
PLL  (y) M2' U' M2' U E2 M' E2 M' 
PLL  M2' U M' E2 M' E2 U' M2' 
PLL  M2' U M2' U M2 B2 M2 B2 
PLL  (M2' U)2 M' (U2 M2' U2) M' U2 
PLL  U R' U' R U' R U R U' R' U R U R2 U' R' U 
PLL  (y) R U R2 U' R' U' R U R' U' R' U R' U R 
PLL  (x') R U' R' (U D) R' (D U') R' U R D2' (x) 
PLL  M2' u M2' D' M S2 M' 
PLL  (y) R2 U R2 U' R2 F2 R2 U' F2 U R2 F2 
PLL  R2 U' R2 U R2 (x') U2 R2 F U2 F' R2 U2 (x) 
PLL  (y') l' U R U' D' R U D' R U' R' D2 (x') 
PLL  R' U' R' F R F' U R F' U' L' U L F 
PLL  R' U' R' F R F' U R U' R' U' F' U F R 
PLL  R U R2 U' R' F R U R U' R U' R' U' R U R' F' 