Difference between revisions of "CxLL"

From Speedsolving.com Wiki
Line 34: Line 34:
 
* [[CLL]]
 
* [[CLL]]
 
* [[COLL]]
 
* [[COLL]]
 +
* [http://www.speedsolving.com/wiki/index.php/Special:AlgDB?mode=view&view=default&puzzle=3&group=COLL COLL Algorithm Database]
 
* [[CMLL]]
 
* [[CMLL]]
 
* [[CLLEF]]
 
* [[CLLEF]]

Revision as of 17:52, 17 March 2010

Corners Last Layer is a group of methods collectively known as C*LL or CxLL that solve the last layer corners in one algorithm. Each method has certain restrictions that apply, and each can affect other pieces in different ways. For example, CMLL allows movement of the M layer and allows destruction of the UL and UR edges. Two other common sets of algorithms include CLL and COLL. These differ from the fact that the latter preserves last layer's edges orientation while the former does not necessarily. In some cases, CLL will give shorter algorithms due to lack of restrictions.

C*LL is useful for the 2x2x2, which has no edges, and also for corners first, which solves edges after the corners. C*LL is also used in Roux's method, and is specifically known as CMLL. It is of course also useful after a normal F2L is compleated, COLL often together with the Petrus method or in the Fridrich variation, with a preceeding VH or ZB F2L. CLL for 3x3 solves the LL corners before anything is done to the edges, that then are solved using ELL (the Guus method), probably the most effective way (that is used) to solve a compleatly scrambled LL in two steps.

The lists

Browse

At bottom of each page there is a navigator that you use to browse from page to page by clicking the names under the thumbnail images.

Case Descriptions

There are 2 tables for case descriptions. The first is the positional recognition system and the second is the hyperorientation recognition system.

Positional System:

CxLL Stickers.jpg All colour patterns showed in the decriptions assumes white on top and green in front (official colour sheme). The description images divided into four quadrants makes one corner each as showed in the image to the left. The stickers showed in the images at the pages are whites for the four belonging to the U face and four more, the important recognition stickers, the rest of the stickers of the corners you can ignore in recognition, that's why those are not displayed in the images.

Hyperorientation System:

Hyper CxLL T U.jpg All color patterns show the orientation case in white. The blue and green stickers show the position of opposite color stickers (red/orange, blue/green, white/yellow on the standard scheme).

In case descriptions there are sometimes links to the "inverse case", that is the case you get if you do N-PLL on the case you got (or faster R2 F2 R2).

The Algorithms

At each page there are list of algs for diffrent types of CxLL menthods, topmost is COLL followed by CLL, CMLL and so on. An alg suitable for COLL is always also suitable for CLL but a CLL is never useful for COLL, if your CLL preserves LL edge orientation then it is a COLL and should be listed as that. If your alg destroys M slice edges then it is a CMLL, if it ruins F2L edges it is a CF / 2x2x2 and if it changes FL corner premutation it is a EG 0/1 alg (all levles are also useful for Ortega). CLLEF differs from COLL only that it flips the orientation of all four LL edges.

Beginners

For a beginner who likes a stepping stone it is possible to do CxLL in two steps; first orientation and then permutation. In the navigator these algs are the grey cases having single letter names, orientations are in the leftmost row and permutations in the topmost line.

See Also

External Links

Navigator

CxLL
edit
CxLL O U.jpg
U
CxLL O D.jpg
D
CxLL O R.jpg
R
CxLL O L.jpg
L
CxLL O F.jpg
F
CxLL O B.jpg
B
CxLL U.jpg
U
CxLL U U.jpg
U U
CxLL U D.jpg
U D
CxLL U R.jpg
U R
CxLL U L.jpg
U L
CxLL U F.jpg
U F
CxLL U B.jpg
U B
CxLL T.jpg
T
CxLL T U.jpg
T U
CxLL T D.jpg
T D
CxLL T R.jpg
T R
CxLL T L.jpg
T L
CxLL T F.jpg
T F
CxLL T B.jpg
T B
CxLL L.jpg
L
CxLL L U.jpg
L U
CxLL L D.jpg
L D
CxLL L R.jpg
L R
CxLL L L.jpg
L L
CxLL L F.jpg
L F
CxLL L B.jpg
L B
CxLL S.jpg
S
CxLL aS U.jpg
S U
CxLL aS D.jpg
S D
CxLL aS R.jpg
S R
CxLL aS L.jpg
S L
CxLL aS F.jpg
S F
CxLL aS B.jpg
S B
CxLL aS.jpg
-S
CxLL S U.jpg
-S U
CxLL S D.jpg
-S D
CxLL S R.jpg
-S R
CxLL S L.jpg
-S L
CxLL S F.jpg
-S F
CxLL S B.jpg
-S B
CxLL Pi.jpg
Pi
CxLL Pi U imp.jpg
Pi U
CxLL pi D.jpg
Pi D
CxLL pi R.jpg
Pi R
CxLL pi L.jpg
Pi L
CxLL pi F.jpg
Pi F
CxLL pi B.jpg
Pi B
CxLL H.jpg
H
CxLL H U.jpg
H U
CxLL H D.jpg
H D
CxLL H R.jpg
H R
CxLL H L.jpg
H L
CxLL H F.jpg
H F
CxLL H B.jpg
H B
Hyper CLL
edit
CxLL O U.jpg
U
CxLL O D.jpg
D
CxLL O R.jpg
R
CxLL O L.jpg
L
CxLL O F.jpg
F
CxLL O B.jpg
B
Hyper CxLL U O.jpg
U
Hyper CxLL U U.jpg
U U
Hyper CxLL U D.jpg
U D
Hyper CxLL U R.jpg
U R
Hyper CxLL U L.jpg
U L
Hyper CxLL U F.jpg
U F
Hyper CxLL U B.jpg
U B
Hyper CxLL T O.jpg
T
Hyper CxLL T U.jpg
T U
Hyper CxLL T D.jpg
T D
Hyper CxLL T R.jpg
T R
Hyper CxLL T L.jpg
T L
Hyper CxLL T F.jpg
T F
Hyper CxLL T B.jpg
T B
Hyper CxLL L O.jpg
L
Hyper CxLL L U.jpg
L U
Hyper CxLL L D.jpg
L D
Hyper CxLL L R.jpg
L R
Hyper CxLL L L.jpg
L L
Hyper CxLL L F.jpg
L F
Hyper CxLL L B.jpg
L B
Hyper CxLL S O.jpg
S
Hyper CxLL S U.jpg
S U
Hyper CxLL S D.jpg
S D
Hyper CxLL S R.jpg
S R
Hyper CxLL S L.jpg
S L
Hyper CxLL S F.jpg
S F
Hyper CxLL S B.jpg
S B
Hyper CxLL aS O.jpg
-S
Hyper CxLL aS U.jpg
-S U
Hyper CxLL aS D.jpg
-S D
Hyper CxLL aS R.jpg
-S R
Hyper CxLL aS L.jpg
-S L
Hyper CxLL aS F.jpg
-S F
Hyper CxLL aS B.jpg
-S B
Hyper CxLL Pi O.jpg
Pi
Hyper CxLL Pi U.jpg
Pi U
Hyper CxLL Pi D.jpg
Pi D
Hyper CxLL Pi R.jpg
Pi R
Hyper CxLL Pi L.jpg
Pi L
Hyper CxLL Pi F.jpg
Pi F
Hyper CxLL Pi B.jpg
Pi B
Hyper CxLL H O.jpg
H
Hyper CxLL H U.jpg
H U
Hyper CxLL H D.jpg
H D
Hyper CxLL H R.jpg
H R
Hyper CxLL H L.jpg
H L
Hyper CxLL H F.jpg
H F
Hyper CxLL H B.jpg
H B