# OPLL

 OPLL Information Proposer(s): unknown Proposed: unknown Alt Names: Lazy ZBLL, MOPLL Variants: none Subgroup: No. Algs: 21 unique with setup moves(PLL algs) Avg Moves: 14.3 HTM Purpose(s): Speedsolving Previous state: unknown Next state: unknown
 Previous cube state -> OPLL step -> Next cube state The OPLL step is the step between the Previous cube state and the Next cube state.

OPLL, also known as lazy ZBLL is a subset of the ZBLL last layer method that caan be solved with conjugate PLL's. So no new algorithms need to be learned if you already know PLL (Conjugate is [A B A']).

Please note that because not everyone uses the same PLL's, the first listed case may not work for you. Because of this, the PLL is listed inside the brackets, feel free to subsitute it.

### Notes

There may be some AUF's or rotations involved in certain cases which will be listed below.

For G-Perms I hold the block in the Front.
For R-Perms I hold the block so that the corner of the block in in the front-right or front-left.
For F-Perms I hold the solved side in the front.
 OPLL

# OPLL algorithms

 Note that all of these algorithms are written in the Western notation, where a lowercase letter means a double-layer turn and rotations are denoted by x, y, and z. (how to add algorithms) Click on an algorithm (not the camera icon) to watch an animation of it.

## Bowtie Cases

### A-perms

 Name: B(A-f) Used in: ZBLL,OPLL Optimal moves: (Aa+2)HTM {{{text}}}
 Name: B(B-f) Used in: ZBLL,OPLL Optimal moves: (Ab+2)HTM {{{text}}}

### G-perms

 Name: B(Gb-f) Used in: ZBLL,OPLL Optimal moves: (Gb+2)HTM {{{text}}}
 Name: B(Gd-f) Used in: ZBLL,OPLL Optimal moves: (Gd+2)HTM {{{text}}}

### J-Perms

 Name: B(L-b) Used in: ZBLL,OPLL Optimal moves: (Ja+2)HTM {{{text}}}
 Name: B(L-l) Used in: ZBLL,OPLL Optimal moves: (Ja+2)HTM {{{text}}}
 Name: B(J-b) Used in: ZBLL,OPLL Optimal moves: (Jb+2)HTM {{{text}}}
 Name: B(J-r) Used in: ZBLL,OPLL Optimal moves: (Jb+3)HTM {{{text}}}

### R-Perms

 Name: B(R-r) Used in: ZBLL,OPLL Optimal moves: (Ra+2)HTM {{{text}}}
 Name: B(R-l) Used in: ZBLL,OPLL Optimal moves: (Rb+2)HTM {{{text}}}

### T-Perms

 Name: B(T-f) Used in: ZBLL, OPLL Optimal moves: (T+2)HTM {{{text}}}
 Name: B(T-b) Used in: ZBLL, OPLL Optimal moves: (T+2)HTM {{{text}}}
 OPLL

### Y-perms

 Name: H(Y-f) Used in: ZBLL,OPLL Optimal moves: (Y+2)HTM {{{text}}}
 Name: H(Y-r) Used in: ZBLL,OPLL Optimal moves: (Y+2)HTM {{{text}}}
 Name: H(Y-fr) Used in: ZBLL,OPLL Optimal moves: (Y+2)HTM {{{text}}}

### V-perms

 Name: H(V-l) Used in: ZBLL,OPLL Optimal moves: (V+2)HTM {{{text}}}
 Name: H(V-f) Used in: ZBLL,OPLL Optimal moves: (V+2)HTM {{{text}}}

### N-Perms

 Name: H(N-f) Used in: ZBLL,OPLL Optimal moves: (Na+2)HTM {{{text}}}
 Name: H(N-b) Used in: ZBLL,OPLL Optimal moves: (Na+2)HTM {{{text}}}
 Name: H(Nb-f) Used in: ZBLL,OPLL Optimal moves: (Nb+2)HTM {{{text}}}
 Name: H(Nb-b) Used in: ZBLL,OPLL Optimal moves: (Nb+2)HTM {{{text}}}
 Name: H(N-l) Used in: ZBLL,OPLL Optimal moves: (Na+2)HTM {{{text}}}
 Name: H(N-r) Used in: ZBLL,OPLL Optimal moves: (Na+2)HTM {{{text}}}
 Name: H(Nb-l) Used in: ZBLL,OPLL Optimal moves: (Nb+2)HTM {{{text}}}
 Name: H(Nb-r) Used in: ZBLL,OPLL Optimal moves: (Nb+2)HTM {{{text}}}

### A-Perms

 Name: H(A-l) Used in: ZBLL,OPLL Optimal moves: (Aa+2)HTM {{{text}}}
 Name: H(B-r) Used in: ZBLL,OPLL Optimal moves: (Aa+2)HTM {{{text}}}
 OPLL F R' B2 R F' R' B2 R

### J-Perms

 Name: H(J-f) Used in: ZBLL,OPLL Optimal moves: (Jb+2)HTM {{{text}}}
 Name: H(L-f) Used in: ZBLL,OPLL Optimal moves: (Ja+2)HTM {{{text}}}

### G-Perms

 Name: H(Ga-f) Used in: ZBLL,OPLL Optimal moves: (Ga+2)HTM {{{text}}}
 Name: H(Gc-f) Used in: ZBLL,OPLL Optimal moves: (Gc+2)HTM {{{text}}}
 OPLL

## Chameleon Cases

### T-perms

 Name: C(T-lru) Used in: ZBLL,OPLL Optimal moves: (T+2)HTM {{{text}}}

### J-perms

 Name: C(J-lb) Used in: ZBLL,OPLL Optimal moves: (Jb+2)HTM {{{text}}}
 Name: C(L-rb) Used in: ZBLL,OPLL Optimal moves: (Ja+2)HTM {{{text}}}
 OPLL

## Other Cases

 Name: Q(F-fr) Used in: ZBLL,OPLL Optimal moves: (F+2)HTM I Know this is a bad alg, but is does work for this case

 OPLL