• Welcome to the Speedsolving.com, home of the web's largest puzzle community!
    You are currently viewing our forum as a guest which gives you limited access to join discussions and access our other features.

    Registration is fast, simple and absolutely free so please, join our community of 35,000+ people from around the world today!

    If you are already a member, simply login to hide this message and begin participating in the community!

Is a SuperCube Safe Single Dedge Flip Algorithm Possible in <U, Rw>?

Joined
Sep 17, 2009
Messages
891
Likes
36
Location
New Orleans, LA
YouTube
4EverTrying
Thread starter #1
A little while ago, cuBerBruce found the following four (34 qtm, 26 ftm) move solutions with k-solve:
Rw U Rw' U Rw' U' Rw2 U Rw2 U2 Rw' U2 Rw U2 Rw' U2 Rw' U Rw' U' Rw U Rw' U2 Rw U2
Rw' U' Rw U' Rw U Rw2 U' Rw2 U2 Rw U2 Rw' U2 Rw U2 Rw U' Rw U Rw' U' Rw U2 Rw' U2
Rw' U' Rw U' Rw U' Rw2 U2 Rw2 U' Rw U2 Rw' U2 Rw U2 Rw U Rw U Rw' U' Rw U2 Rw' U2
Rw U Rw' U Rw' U Rw2 U2 Rw2 U Rw' U2 Rw U2 Rw' U2 Rw' U' Rw' U' Rw U Rw' U2 Rw U2

Looking at a 4x4x4 supercube after each is applied, we can see that two X-center pieces in the top layer are swapped, and the right center is rotated 90 degrees. With the move restriction <U, Rw>, one cannot possibly do a 3-cycle of X-center pieces inside the top center and the right center.

This made me question whether or not a supercube safe algorithm for this case (or any other 2-cycle of wings case) in <U, Rw> is even possible.

I tried another route to make an algorithm like this, but similar to my poor approach in <U, Rw> it's very long. You'll definitely need a supercube applet to see that the following is supercube safe. It has a scary length of (1543 qtm, 1152 ftm) and (1527 qtm, 1141 ftm) if you cancel moves with each of the main pieces. Each of the main pieces are repeated. So you can look at what those do separately if you're interested to see how I made this by hand.

(SiGN Notation) [Link]

r' (r2 U2 r U2 r2 U' r' U2 r' U r' U' r U r' U' r U2 r2 U2 r2 U2 r U r U' r' U r U2 r' U' r U r' U' r' U2 r2 U2 r2 U2 r' U r U' r' U r U r U2 r U r2 U2 r' U2 r2 U2 r2 U2 r U2 r2 U' r' U2 r' U' r' U' r U r' U' r U2 r2 U2 r2 U2 r U r U' r' U r U2 r' U' r U r' U' r' U2 r2 U2 r2 U2 r' U r U' r' U r U' r U2 r U r2 U2 r' U2 r2 U2 r U2 r2 U2 r U2 r2 U' r' U2 r' U r' U' r U r' U' r U2 r2 U2 r2 U2 r U r U' r' U r U2 r' U' r U r' U' r' U2 r2 U2 r2 U2 r' U r U' r' U r U r U2 r U r2 U2 r' U2 r2 U2 r2 U2 r U2 r2 U' r' U2 r' U' r' U' r U r' U' r U2 r2 U2 r2 U2 r U r U' r' U r U2 r' U' r U r' U' r' U2 r2 U2 r2 U2 r' U r U' r' U r U' r U2 r U r2 U2 r' U2 r)3 r (r U r U r U' r' U2 r2 U2 r U2 r' U r2 U' r2 U' r U2 r' U' r U2 r' U r U2 r' U' r U2 r' U' r U2 r' U r U2 r' U' r U2 r' U' r U2 r' U r U2 r' U' r U2 r' U' r U2 r' U r U2 r U r2 U' r U2 r2 U2 r2 U2 r' U2 r U2 r' U2 r' U2 r2 U2 r2 U2 r' U2 r2 U r' U' r' U' r' U' r U2 r' U r U2 r' U2 r U r' U r U2 r' U2 r U r' U r U2 r' U2 r U r' U r U2 r' U2 r U' r' U' r U r' U2 r U2 r' U' r U' r' U2 r U2 r' U' r U' r' U2 r U2 r' U' r U2 r' U' r U r' U2 r U2 r' U' r U' r' U2 r U2 r' U' r U' r' U2 r U2 r' U' r U2 r')2 (r U r' U r' U r2 U2 r2 U r' U2 r U2 r' U2 r' U' r' U' r U r' U2 r U2)2 r

The big problem is that it also does the move R.

So the one question we have to answer is if the move R' (on applied on the supercube) can be reached in <U, Rw>.

If it isn't possible to do the move R' on a 4x4x4 supercube with <U, Rw>, then it is definitely impossible for a supercube safe 2-cycle of wings to exist. And if so, is there a way someone could find the optimal solution (with k-solve or whatever program is out there) for my alg? (I would be interested to see how long the optimal solution is for a supercube dedge flip + the move R in <U, Rw>).
 
Joined
Dec 18, 2007
Messages
7,830
Likes
33
Location
a <script> tag near you
WCA
2006GOTT01
YouTube
qqwref2
#2
Consider an algorithm in <U,Rw> that changes the parity of the wings. Since Rw is the only type of move that can affect parity, there must be an odd number of Rw's (in qtm). But we can also notice that Rw is the only type of move that can affect the right center - and the right center can only be solved if there are an even number of Rw's (in qtm).

So, sorry, but a supercube parity algorithm in <U,Rw> cannot leave the right center solved :p
 
Joined
Sep 17, 2009
Messages
891
Likes
36
Location
New Orleans, LA
YouTube
4EverTrying
Thread starter #5
Consider an algorithm in <U,Rw> that changes the parity of the wings. Since Rw is the only type of move that can affect parity, there must be an odd number of Rw's (in qtm). But we can also notice that Rw is the only type of move that can affect the right center - and the right center can only be solved if there are an even number of Rw's (in qtm).
I can't believe I didn't think about that! Now I still would like to see an optimal algorithm which does the same thing as mine. :)

EDIT: This also must mean that you cannot do R or r in <U, Rw>. That's insane!
 
Last edited:
Joined
Dec 18, 2007
Messages
7,830
Likes
33
Location
a <script> tag near you
WCA
2006GOTT01
YouTube
qqwref2
#6
I can't believe I didn't think about that! Now I still would like to see an optimal algorithm which does the same thing as mine. :)
Mm, yeah. Bruce's ksolve solutions are impressive, a solution of that long must take quite a while to compute...

EDIT: This also must mean that you cannot do R or r in <U, Rw>. That's insane!
I dunno, maybe you can, just not supercube-safe. It's possible to do a non-supercube-safe R move by doing your alg followed by U r U r' U r' U' r2 U r2 U2 r' U2 r U2 r' U2 r' U r' U' r U r' U2 r U.
 
Joined
Sep 17, 2009
Messages
891
Likes
36
Location
New Orleans, LA
YouTube
4EverTrying
Thread starter #7
Last edited:
Top