• Welcome to the Speedsolving.com, home of the web's largest puzzle community!
    You are currently viewing our forum as a guest which gives you limited access to join discussions and access our other features.

    Registration is fast, simple and absolutely free so please, join our community of 35,000+ people from around the world today!

    If you are already a member, simply login to hide this message and begin participating in the community!

Higher dimensional Rubik's cube

Aug 5, 2015
Hi. I'm trying to define the group of the Rubik's cube in arbitrary dimension. I shall explain what i figured out till now.
Let \( T_n \) be the group of rotational isometries of the n-dimensional cube. It acts transitively and faithfully on the
m-dimensional faces of the n-dimensional cube for any m between 0 and n.
be the stabilizer of any of such faces (it does not depend, up to isomorphism, on the chosen face): that is, we consider the rotational isometries of the n-dimensional cube fixing a given m-dimensional face. So I define the 'illegal' n-dimensional Rubik's cube group to be:
That's because each of the m-dimensional pieces of the puzzle would have
as orientation group because that piece would be 'attached' by one of its m-dimensional faces (any piece is itself an n-dimensional cube) to the 'core' of the whole puzzle.
My problem is: i can't figure out how to define the generators on that group to build the real n-dimensional Rubik's cube group. It may be useful to note that by Krasner-Kalujnin embedding we have that \( T_n \) is embedded (in the way that we expect) in our illegal group.
Has any of you got any idea?

(sorry for the latex mess, i got problems on this forum using implemented latex tool)
Jul 20, 2006
Ann Arbor, MI
The math is a tad beyond me, but the generators of the group is easy to explain.

Let N be the number of dimensions and for simplicity the puzzle is 3^N (as opposed to L^N, with L>3 which would have additional slice maneuvers).
Each of the 2*N facets/sides can rotate in a number of ways (not including the null-turn) -- 1 when N=2, 3 when N=3, 23 when N=4, and 191 when N=5. Pattern is (N! * 2^(N-1))-1.
However, this includes all the non-90-degree rotations (such as vertex-turns and edge-turns on a 3x3x3x3), which can be generated from a series 90-degree rotations of the same facet.
If N>2, the rotations of a facet can be generated with N-2 elements. For example, using just 2 elements you can generate all 24 rotational symmetries of a hexahedron.
Thus, the total number of generators would be 2*N*(N-2). You just gotta be careful defining those N-2 rotations of a facet in a consistent manner when N is arbitrary.

A 3x3x3 can be considered a group with 6 generators, as expected.
A 3x3x3x3 can be considered a group with 16 generators.
I believe my outline provides minimal number of generators.



Sep 8, 2010
Hello quelramodellago. I am sorry for a late response ( I noticed your thread 2 minutes ago).

I don't understand the math either. However, people at http://twistypuzzles.com/forum could, therefore if you still haven't found an answer to your question, I highly recommend you to ask also at that linked forum.