# PEG

PEG, pairs + Erik + Gunnar or Erik Akkersdijk and Gunnar Krig's 2x2x2 method EG but moved over to 3x3x3. Here not only the corners of the first layer are oriented as the first step, the whole pairs are. So it will be Pairs-EG or simply PEG!

PEG differs slightly from EG, most algorithms can be used if some of the turns are done double layer to preserve the pairs. But some algorithms destoys them no matter how they are performed, in those cases other, possibly longer algorithms got to be used.

Example: this algorithhm solves EG 1 Pi D

• R U R' L' U' L R U R'

To use it for PEG it must be done like this:

• R U R' l' U' L r U R'

PEG is best used together with L5E.

PEG is also useful for direct solving big cubes, the only difference is that the "pairs" has got more edges and you need to do triple, quadruple e.t.c. layer turns to preserve them while doing EG.

This method can be divided into three groups, PEG 0, PEG 1 and PEG 2 where the number is the number of pairs correctly placed in F2L. If two adjacent pairs are swaped it is PEG 1 (1 pair of pairs connected), if two diagonal pairs are swaped it is PEG 0 (no pairs connected) and if all pairs are correct it is PEG 2 (2 connected pairs of pairs).

PEG 2 is a stand alone method where you use a standard CxLL (CMLL or rather CMSLL because also the S-slice is free).

A begginer / stepping stone method that divides PEG into two steps is PORT. That is the same as Ortega but preserving pairs orientation (but not permutation) rather than only FL corners.